On Multiplicative Semigroups of Residue Classes

نویسنده

  • E. T. PARKER
چکیده

The set of residue classes, modulo any positive integer, is commutative and associative under the operation of multiplication. The author made the conjecture: For each finite commutative semigroup, S, there exists a positive integer, n, such that S is isomorphic with a subsemigroup of the multiplicative semigroup of residue classes (mod n). (A semigroup is a set closed with respect to a single-valued associative binary operation.) A counter-example to the above follows: Let S be the set, {z, a, b, c}, with all products defined to be z except bc = cb — a. Assume that there exists a positive integer, n, and four distinct residue classes, z, a, b, c (mod n) forming a system under multiplication isomorphic with S. Form the residue classes, 0=3 —2, a'=a — z, b' — b—z, c' — c — z. For x and y any ordered pair of z, a, 0, c, we have ix — z)iy—z)=xy~z — z+z = xy — z. Thus, 0, a', b', c' form a multiplicative semigroup isomorphic with S, where 0 is the zero residue class. The following must hold: o'2 and c'2 are each the zero residue class (mod n), but b'c' is a nonzero residue class; i.e., w|/32, ra|72, n\fiy, where /3 and 7 are integers in the residue classes 0' and c' (mod n) respectively. Since m|/32 and «|72, it follows that n2\$2y2, and n\(3y. The desired contradiction has been obtained. We begin the main result of this paper with a Definition. For each prime-power, pk, and each positive integer, m, we define a basic semigroup, aipk, m), with generators x and y, identity 1, annihilator 0, and commutative multiplication defined by:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of the multiplicative nilpotency of self-homotopy sets

The semigroup of the homotopy classes of the self-homotopy maps of a finite complex which induce the trivial homomorphism on homotopy groups is nilpotent. We determine the nilpotency of these semigroups of compact Lie groups and finite Hopf spaces of rank 2. We also study the nilpotency of semigroups for Lie groups of higher rank. Especially, we give Lie groups with the nilpotency of the semigr...

متن کامل

Brandt extensions and primitive topologically periodic inverse topological semigroups

In this paper we find sufficient conditions on primitive inverse topological semigroup S under which: the inversion inv : (H(S)) (H(S)) is continuous; we show that every topologically periodic countable compact primitive inverse topological semigroups with closed H-classes is topologically isomorphic to an orthogonal sum P i2= Bi (Gi) of topological Brandt extensions Bi (Gi) of countably compac...

متن کامل

Subdirectly irreducible acts over some semigroups

‎In this paper‎, ‎we characterize and find the number of subdirectly‎ ‎irreducible acts over some classes of semigroups‎, ‎such as zero‎ ‎semigroups‎, ‎right zero semigroups‎ ‎and strong chain of left zero semigroups.

متن کامل

ON SMARANDACHE ALGEBRAIC STRUCTURES.I :THE COMMUTATIVE MULTIPLICATIVE SEMIGROUP A(a,n)

In this paper, under the Smarandache algorithm ,we construct a class of commutative multiplicative semigroups.

متن کامل

Multiplicative Preservers of C-Numerical Ranges and Radii

Multiplicative preservers of C-numerical ranges and radii on certain groups and semigroups of complex n × n matrices are characterized. The general and special linear groups are considered, as well as the semigroups of matrices having ranks not exceeding k, with k fixed in advance. For a fixed C, it turns out that typically the multiplicative preservers of the C-numerical range (or radius) have...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010